LeetCode Summary
  • Introduction
  • DP, 动态规划类
    • Best Time to Buy and Sell Stock III 题解
    • Best Time to Buy and Sell Stock 题解
    • Climbing Stairs 题解
    • Decode Ways 题解
    • Distinct Subsequences 题解
    • Edit Distance 题解
    • Interleaving String 题解
    • Longest Palindromic Substring 题解
    • Maximum Product Subarray 题解
    • Maximum Subarray 题解
    • Minimum Path Sum 题解
    • Palindrome Partitioning 题解
    • Palindrome Partitioning II 题解
    • Scramble String 题解
    • Triangle 题解
    • Unique Binary Search Trees 题解
    • Unique Paths II 题解
    • Word Break 题解
    • Word Break II 题解
  • list, 链表相关
    • Add Two Numbers 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Copy List with Random Pointer 题解
    • Insertion Sort List 题解
    • LRU Cache 题解
    • Linked List Cycle 题解
    • Linked List Cycle II 题解
    • Merge Two Sorted Lists 题解
    • Merge k Sorted Lists 题解
    • Partition List 题解
    • Remove Duplicates from Sorted List 题解
    • Remove Duplicates from Sorted List II 题解
    • Remove Nth Node From End of List 题解
    • Reorder List 题解
    • Reverse Linked List II 题解
    • Reverse Nodes in k-Group 题解
    • Rotate List 题解
    • Sort List 题解
    • Swap Nodes in Pairs 题解
  • binary tree, 二叉树相关
    • Balanced Binary Tree 题解
    • Binary Tree Inorder Traversal 题解
    • Binary Tree Level Order Traversal 题解
    • Binary Tree Level Order Traversal II 题解
    • Binary Tree Maximum Path Sum 题解
    • Binary Tree Postorder Traversal 题解
    • Binary Tree Preorder Traversal 题解
    • Binary Tree Zigzag Level Order Traversal 题解
    • Construct Binary Tree from Inorder and Postorder Traversal 题解
    • Construct Binary Tree from Preorder and Inorder Traversal 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Flatten Binary Tree to Linked List 题解
    • Maximum Depth of Binary Tree 题解
    • Minimum Depth of Binary Tree 题解
    • Path Sum 题解
    • Path Sum II 题解
    • Populating Next Right Pointers in Each Node 题解
    • Populating Next Right Pointers in Each Node II 题解
    • Recover Binary Search Tree 题解
    • Same Tree 题解
    • Sum Root to Leaf Numbers 题解
    • Symmetric Tree 题解
    • Unique Binary Search Trees 题解
    • Unique Binary Search Trees II 题解
    • Validate Binary Search Tree 题解
  • sort, 排序相关
    • 3Sum Closest 题解
    • 3Sum 题解
    • 4Sum 题解
    • Insert Interval 题解
    • Longest Consecutive Sequence 题解
    • Merge Intervals 题解
    • Merge Sorted Array 题解
    • Remove Duplicates from Sorted Array 题解
    • Remove Duplicates from Sorted Array II 题解
    • Sort Colors 题解
    • Two Sum 题解
  • search, 搜索相关
    • First Missing Positive 题解
    • Find Minimum in Rotated Sorted Array 题解
    • Find Minimum in Rotated Sorted Array II 题解
    • Median of Two Sorted Arrays 题解
    • Search Insert Position 题解
    • Search a 2D Matrix 题解
    • Search for a Range 题解
    • Search in Rotated Sorted Array 题解
    • Search in Rotated Sorted Array II 题解
    • Single Number 题解
    • Single Number II 题解
  • math, 数学类相关
    • Add Binary 题解
    • Add Two Numbers 题解
    • Divide Two Integers 题解
    • Gray Code 题解
    • Integer to Roman 题解
    • Multiply Strings 题解
    • Palindrome Number 题解
    • Plus One 题解
    • [Pow(x, n) 题解](math/Pow(x,-n).md)
    • Reverse Integer 题解
    • Roman to Integer 题解
    • [Sqrt(x) 题解](math/Sqrt(x).md)
    • [String to Integer (atoi) 题解](math/String-to-Integer-(atoi).md)
    • Valid Number 题解
  • string, 字符串处理相关
    • Anagrams 题解
    • Count and Say 题解
    • Evaluate Reverse Polish Notation 题解
    • [Implement strStr() 题解](string/Implement-strStr().md)
    • Length of Last Word 题解
    • Longest Common Prefix 题解
    • Longest Palindromic Substring 题解
    • Longest Substring Without Repeating Characters 题解
    • Longest Valid Parentheses 题解
    • Minimum Window Substring 题解
    • Regular Expression Matching 题解
    • Reverse Words in a String 题解
    • Simplify Path 题解
    • Text Justification 题解
    • Valid Parentheses 题解
    • Wildcard Matching 题解
    • ZigZag Conversion 题解
  • combination and permutation, 排列组合相关
    • Combinations 题解
    • Combination Sum 题解
    • Combination Sum II 题解
    • Letter Combinations of a Phone Number 题解
    • Next Permutation 题解
    • Palindrome Partitioning 题解
    • Permutation Sequence 题解
    • Permutations 题解
    • Permutations II 题解
    • Subsets 题解
    • Subsets II 题解
    • Unique Paths 题解
  • matrix, 二维数组, 矩阵相关
    • Rotate Image 题解
    • Set Matrix Zeroes 题解
    • Spiral Matrix 题解
    • Spiral Matrix II 题解
    • Maximal Rectangle 题解
  • 回溯, BFS/DFS
    • Clone Graph 题解
    • Generate Parentheses 题解
    • N-Queens 题解
    • N-Queens II 题解
    • Restore IP Addresses 题解
    • Sudoku Solver 题解
    • Surrounded Regions 题解
    • Word Ladder 题解
    • Word Ladder II 题解
    • Word Search 题解
  • greedy, 贪心
    • Best Time to Buy and Sell Stock II 题解
    • Jump Game 题解
    • Jump Game II 题解
  • 其他
    • Candy 题解
    • Container With Most Water 题解
    • Gas Station 题解
    • Gray Code 题解
    • Max Points on a Line 题解
    • [Pascal's Triangle 题解](others/Pascal's-Triangle.md)
    • [Pascal's Triangle II 题解](others/Pascal's-Triangle-II.md)
    • Remove Element 题解
    • Trapping Rain Water 题解
Powered by GitBook
On this page

Was this helpful?

  1. DP, 动态规划类

Word Break II 题解

PreviousWord Break 题解Nextlist, 链表相关

Last updated 5 years ago

Was this helpful?

题目来源:

>

Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each word is a valid dictionary word.

Return all such possible sentences.

For example, given
s = "catsanddog",
dict = ["cat", "cats", "and", "sand", "dog"].

A solution is ["cats and dog", "cat sand dog"].

解题思路:

沿用的思路,dp[i]表示s中0到i的串能在dict中对应,首先想到的是用vector把dp[i]为true的情况都保存下来(即以i为结尾的单词),最后组装回去可得到结果。注意不能每次得到dp[i]为true就去枚举结果,这样会超时(最后可能没有成功走到结尾也浪费了时间在这里去拼装)。

代码如下:

     void searchResult(string input, vector<vector<string> >&dp, int len, vector<string> &result)
    {
        if(len <= 0) 
        {
            if(len == 0)
                result.push_back(input);
            return;
        }
        for(int i = 0; i < dp[len].size(); i++)
        {
            string str = dp[len][i];
            if(input.length() > 0)
                searchResult(str + " " + input, dp, len - str.length(), result);
            else
                searchResult(str, dp, len - str.length(), result);
        }
    }
    vector<string> dp(string s, unordered_set<string> &dict)
    {
        int n = s.length();
        vector<bool> dp(n+1, false);
        dp[0] = true;
        vector<vector<string> > dpStrings(n+1, vector<string>());
        for(int j = 1; j <= n; j++)
            for(int i = 0; i < j; i++)
            {
                if(dp[i]) //dp[i], true, dp[i] && s[i:j]==> dp[j]
                {
                    string str = s.substr(i, j-i);
                    if(dict.find(str) != dict.end())
                    {
                        dp[j] = true;
                        //break;, can NOT break, for wordbreak II should return all the possible solutions
                        dpStrings[j].push_back(str);
                    }
                }
            }
        vector<string> result;
        if(dp[n])
            searchResult("", dpStrings, n, result);
        return result;
    }
    vector<string> wordBreak(string s, unordered_set<string> &dict) {
        return dp(s, dict);
    }

其实,按照上面提的思路一边dp的时候就去枚举结果也是可以的,测试用例中就那一个较长的过不了,先按照wordbreak的思路detective一下再枚举就可以AC。(一般人我不告诉他) :)

    //中途的复杂度记录dps的复杂度较高,用例(aaaaaaaaaaaaaaaa*b, aaaaaa...aaa)可能最后没有结果 但仍然搜索了很多次,导致超时或内存超过
    //先detect一下 可以通过oj
    vector<string> wordBreak2(string s, unordered_set<string> &dict)
    {
        if(! wordBreak(s, dict))
            return vector<string>();
        size_t len = s.length();
        vector<bool> dp(len+1, false);
        dp[0] = true; //dp[i] : s[0:i] is ok
        vector< vector<string> > dps(len+1);
        for(int i = 1; i <= len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(dp[j]) // dp[0:j] ok + s[j:i] ok ---> dp[i] is ok
                {
                    string sub =  s.substr(j, i-j);
                    if(dict.find(sub) != dict.end())
                    {
                        dp[i] = true;
                        if(dps[j].size() > 0)
                        {
                            for(auto it = dps[j].begin(); it != dps[j].end(); it++)
                                dps[i].push_back(string((*it) + " "+ sub));
                        }else
                        {
                            dps[i].push_back(sub);
                        }

                    }
                }
            }
        }
        return dps[len];
    }
Word Break II
Word break