> Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
int maxSubArray(int A[], int n)
{
assert(n != 0);
vector<int> dp(n, 0);
dp[0] = A[0];
int result = A[0];
for(int i = 1; i < n; i++)
{
if(dp[i-1] < 0)
dp[i] = A[i];
else
dp[i] = dp[i-1] + A[i];
result = std::max(result, dp[i]);
}
return result;
}
DP, O(1) 空间
上面的优化一下即可。
//Kadane's algorithm O(n)
//max_end_here是结束位置为i-1的最大子数组和
int maxSubArray(int A[], int n)
{
int max_so_far = A[0];
int max_end_here = A[0];
for(int i = 1; i < n; i++)
{
if(max_end_here < 0)
max_end_here = A[i];
else
max_end_here += A[i];
max_so_far = std::max(max_so_far, max_end_here);
}
return max_so_far ;
}
分治, O(nlogn)
分治算法:要么左半/右半,要么包括中间的和左右两边都有部分, 时间复杂度O(NlogN).
//Divide and Conquer O(nlogn)
int maxSubArrayDAC(int A[], int left, int right)
{
if(right < left) return INT_MIN;
if(right == left)
return A [left]; //at least 1 element
int mid = left + ((right - left)>>1);
//across left and right
int crossSumLeft = A[mid]; //including mid
int crossMaxLeft = A[mid];
for(int i = mid-1; i >= left; i--)
{
crossSumLeft += A[i];
crossMaxLeft = std::max(crossMaxLeft, crossSumLeft);
}
int crossSumRight = A[mid];
int crossMaxRight = A[mid];
for(int i = mid+1; i <= right; i++)
{
crossSumRight += A[i];
crossMaxRight = std::max(crossMaxRight, crossSumRight);
}
int crossMax = crossMaxLeft + crossMaxRight - A[mid];
int leftMax = maxSubArrayDAC( A, left , mid-1);
int rightMax = maxSubArrayDAC( A, mid+1, right );
return std::max(std::max(leftMax, rightMax), crossMax);
}
int maxSubArray(int A[], int n)
{
assert(n != 0);
if(n == 1) return A[0];
return maxSubArrayDAC(A, 0, n-1) ;
}