LeetCode Summary
  • Introduction
  • DP, 动态规划类
    • Best Time to Buy and Sell Stock III 题解
    • Best Time to Buy and Sell Stock 题解
    • Climbing Stairs 题解
    • Decode Ways 题解
    • Distinct Subsequences 题解
    • Edit Distance 题解
    • Interleaving String 题解
    • Longest Palindromic Substring 题解
    • Maximum Product Subarray 题解
    • Maximum Subarray 题解
    • Minimum Path Sum 题解
    • Palindrome Partitioning 题解
    • Palindrome Partitioning II 题解
    • Scramble String 题解
    • Triangle 题解
    • Unique Binary Search Trees 题解
    • Unique Paths II 题解
    • Word Break 题解
    • Word Break II 题解
  • list, 链表相关
    • Add Two Numbers 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Copy List with Random Pointer 题解
    • Insertion Sort List 题解
    • LRU Cache 题解
    • Linked List Cycle 题解
    • Linked List Cycle II 题解
    • Merge Two Sorted Lists 题解
    • Merge k Sorted Lists 题解
    • Partition List 题解
    • Remove Duplicates from Sorted List 题解
    • Remove Duplicates from Sorted List II 题解
    • Remove Nth Node From End of List 题解
    • Reorder List 题解
    • Reverse Linked List II 题解
    • Reverse Nodes in k-Group 题解
    • Rotate List 题解
    • Sort List 题解
    • Swap Nodes in Pairs 题解
  • binary tree, 二叉树相关
    • Balanced Binary Tree 题解
    • Binary Tree Inorder Traversal 题解
    • Binary Tree Level Order Traversal 题解
    • Binary Tree Level Order Traversal II 题解
    • Binary Tree Maximum Path Sum 题解
    • Binary Tree Postorder Traversal 题解
    • Binary Tree Preorder Traversal 题解
    • Binary Tree Zigzag Level Order Traversal 题解
    • Construct Binary Tree from Inorder and Postorder Traversal 题解
    • Construct Binary Tree from Preorder and Inorder Traversal 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Flatten Binary Tree to Linked List 题解
    • Maximum Depth of Binary Tree 题解
    • Minimum Depth of Binary Tree 题解
    • Path Sum 题解
    • Path Sum II 题解
    • Populating Next Right Pointers in Each Node 题解
    • Populating Next Right Pointers in Each Node II 题解
    • Recover Binary Search Tree 题解
    • Same Tree 题解
    • Sum Root to Leaf Numbers 题解
    • Symmetric Tree 题解
    • Unique Binary Search Trees 题解
    • Unique Binary Search Trees II 题解
    • Validate Binary Search Tree 题解
  • sort, 排序相关
    • 3Sum Closest 题解
    • 3Sum 题解
    • 4Sum 题解
    • Insert Interval 题解
    • Longest Consecutive Sequence 题解
    • Merge Intervals 题解
    • Merge Sorted Array 题解
    • Remove Duplicates from Sorted Array 题解
    • Remove Duplicates from Sorted Array II 题解
    • Sort Colors 题解
    • Two Sum 题解
  • search, 搜索相关
    • First Missing Positive 题解
    • Find Minimum in Rotated Sorted Array 题解
    • Find Minimum in Rotated Sorted Array II 题解
    • Median of Two Sorted Arrays 题解
    • Search Insert Position 题解
    • Search a 2D Matrix 题解
    • Search for a Range 题解
    • Search in Rotated Sorted Array 题解
    • Search in Rotated Sorted Array II 题解
    • Single Number 题解
    • Single Number II 题解
  • math, 数学类相关
    • Add Binary 题解
    • Add Two Numbers 题解
    • Divide Two Integers 题解
    • Gray Code 题解
    • Integer to Roman 题解
    • Multiply Strings 题解
    • Palindrome Number 题解
    • Plus One 题解
    • [Pow(x, n) 题解](math/Pow(x,-n).md)
    • Reverse Integer 题解
    • Roman to Integer 题解
    • [Sqrt(x) 题解](math/Sqrt(x).md)
    • [String to Integer (atoi) 题解](math/String-to-Integer-(atoi).md)
    • Valid Number 题解
  • string, 字符串处理相关
    • Anagrams 题解
    • Count and Say 题解
    • Evaluate Reverse Polish Notation 题解
    • [Implement strStr() 题解](string/Implement-strStr().md)
    • Length of Last Word 题解
    • Longest Common Prefix 题解
    • Longest Palindromic Substring 题解
    • Longest Substring Without Repeating Characters 题解
    • Longest Valid Parentheses 题解
    • Minimum Window Substring 题解
    • Regular Expression Matching 题解
    • Reverse Words in a String 题解
    • Simplify Path 题解
    • Text Justification 题解
    • Valid Parentheses 题解
    • Wildcard Matching 题解
    • ZigZag Conversion 题解
  • combination and permutation, 排列组合相关
    • Combinations 题解
    • Combination Sum 题解
    • Combination Sum II 题解
    • Letter Combinations of a Phone Number 题解
    • Next Permutation 题解
    • Palindrome Partitioning 题解
    • Permutation Sequence 题解
    • Permutations 题解
    • Permutations II 题解
    • Subsets 题解
    • Subsets II 题解
    • Unique Paths 题解
  • matrix, 二维数组, 矩阵相关
    • Rotate Image 题解
    • Set Matrix Zeroes 题解
    • Spiral Matrix 题解
    • Spiral Matrix II 题解
    • Maximal Rectangle 题解
  • 回溯, BFS/DFS
    • Clone Graph 题解
    • Generate Parentheses 题解
    • N-Queens 题解
    • N-Queens II 题解
    • Restore IP Addresses 题解
    • Sudoku Solver 题解
    • Surrounded Regions 题解
    • Word Ladder 题解
    • Word Ladder II 题解
    • Word Search 题解
  • greedy, 贪心
    • Best Time to Buy and Sell Stock II 题解
    • Jump Game 题解
    • Jump Game II 题解
  • 其他
    • Candy 题解
    • Container With Most Water 题解
    • Gas Station 题解
    • Gray Code 题解
    • Max Points on a Line 题解
    • [Pascal's Triangle 题解](others/Pascal's-Triangle.md)
    • [Pascal's Triangle II 题解](others/Pascal's-Triangle-II.md)
    • Remove Element 题解
    • Trapping Rain Water 题解
Powered by GitBook
On this page
  • DP, O(n) 空间
  • DP, O(1) 空间
  • 分治, O(nlogn)

Was this helpful?

  1. DP, 动态规划类

Maximum Subarray 题解

PreviousMaximum Product Subarray 题解NextMinimum Path Sum 题解

Last updated 5 years ago

Was this helpful?

题目来源:

> Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

解题思路:

注意此例是连续subarray,且最少得选1个。

若当前i,前面i-1的结果若为负的话,新序列就从当前A[i]开始算起了,不然就将当前A[i]附加上去。

DP, O(n) 空间

    int maxSubArray(int A[], int n) 
    {
        assert(n != 0);
        vector<int> dp(n, 0);
        dp[0] = A[0];
        int result = A[0];
        for(int i = 1; i < n; i++)
        {
            if(dp[i-1] < 0)
                dp[i] = A[i];
            else
                dp[i] = dp[i-1] + A[i];
            result = std::max(result, dp[i]);
        }
        return result;
    }

DP, O(1) 空间

上面的优化一下即可。

    //Kadane's algorithm O(n)
    //max_end_here是结束位置为i-1的最大子数组和
    int maxSubArray(int A[], int n)
    {
        int max_so_far = A[0];
        int max_end_here = A[0];
        for(int i = 1; i < n; i++)
        {
            if(max_end_here < 0)
                max_end_here = A[i];
            else
                max_end_here += A[i];
            max_so_far = std::max(max_so_far, max_end_here);
        }
        return max_so_far ;
    }

分治, O(nlogn)

分治算法:要么左半/右半,要么包括中间的和左右两边都有部分, 时间复杂度O(NlogN).

    //Divide and Conquer O(nlogn)
    int maxSubArrayDAC(int A[], int left, int right)
    {
        if(right < left) return INT_MIN;
        if(right == left)
            return A [left]; //at least 1 element
        int mid = left + ((right - left)>>1);
        //across left and right
        int crossSumLeft = A[mid]; //including mid
        int crossMaxLeft = A[mid];
        for(int i = mid-1; i >= left; i--)
        {
            crossSumLeft += A[i];
            crossMaxLeft = std::max(crossMaxLeft, crossSumLeft);
        }
        int crossSumRight = A[mid];
        int crossMaxRight = A[mid];
        for(int i = mid+1; i <= right; i++)
        {
            crossSumRight += A[i];
            crossMaxRight = std::max(crossMaxRight, crossSumRight);
        }
        int crossMax = crossMaxLeft + crossMaxRight - A[mid];
        int leftMax = maxSubArrayDAC( A, left , mid-1);
        int rightMax = maxSubArrayDAC( A, mid+1, right );
        return std::max(std::max(leftMax, rightMax), crossMax);
    } 
    int maxSubArray(int A[], int n)
    {
        assert(n != 0);
        if(n == 1) return A[0];
        return maxSubArrayDAC(A, 0, n-1) ;
    }

参考资料:

Maximum Subarray
ref