Minimum Path Sum 题解
题目来源:Minimum Path Sum
> Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in time.
解题思路:
递归
用递归思路比较清晰,然后转成迭代。
int min(vector<vector<int> >&grid, int row, int col)
{
if(row == 0)
{
int result = 0;
for(int i = 0; i <= col; i++)
result += grid[0][i];
return result;
}
if(col == 0)
{
int result = 0;
for(int i = 0; i <= row; i++)
result += grid[i][0];
return result;
}
int fromleft = min(grid, row, col-1);
int fromup = min(grid, row-1, col);
return std::min(fromleft, fromup);
}
动态规划, O(m+n)空间
int minPathSum(vector<vector<int> > &grid)
{
int m = grid.size(); if(m == 0) return INT_MIN;
int n = grid[0].size();
vector<vector<int> > dp(m, vector<int>(n, 0));
dp[0][0] = grid[0][0];
for(int i = 1; i < n; i++)
dp[0][i] = dp[0][i-1] + grid[0][i];
for(int i = 1; i < m; i++)
dp[i][0] = dp[i-1][0] + grid[i][0];
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
dp[i][j] = std::min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
return dp[m-1][n-1];
}
动态规划, O(n)空间
更加节约点空间可以这样. 参考了leetcode-cpp
f[j] = min(f[j-1], f[j])+grid[i][j];
右边的f[j]是老的f[j]表示v[i-1][j], f[j-1]即为v[i][j-1]
左边f[j]是新的,即v[i][j].
int minPathSum(vector<vector<int > > &grid)
{
int m = grid.size(); if (m == 0) return INT_MIN;
int n = grid[0].size();
vector< int> f(n, INT_MAX );
f[0] = 0;
for (int i = 0; i < m; i++)
{
f[0] += grid[i][0];
for (int j = 1; j < n; j++)
f[j] = std::min(f[j - 1], f[j]) + grid[i][j];
}
return f[n - 1];
}
Last updated
Was this helpful?