Distinct Subsequences 题解
>
Given a string S and a string T, count the number of distinct subsequences of T
in S.
A subsequence of a string is a new string which is formed from the original
string by deleting some (can be none) of the characters without disturbing the
relative positions of the remaining characters. (ie, "ACE" is a subsequence of
"ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
解题思路:
动态规划, dp[j][i]
表示S[:i],T[:j]
的结果, dp[j][i]至少为dp[j][i-1] 那么 若S[i] == T[j]
, 则dp[j][i]还得加上dp[j-1][i-1]即S[:i-1],T[:j-1]的匹配结果。
int numDistinct(string S, string T)
{
int n = S.length();
int m = T.length();
if(m >= n) return T == S ? 1 : 0;
vector<vector<int> > dp(m, vector<int>(n, 0));
//dp[j][i] S[:i] T[:j] matches
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
{
if(i >= 1)
dp[j][i] = dp[j][i-1];
if(S[i] == T[j])
{
if(j >= 1 && i >= 1)
dp[j][i] += dp[j-1][i-1];
if(j == 0)
dp[j][i] += 1;
}
}
return dp[m-1][n-1];
}
若以dp[j][i]中的i/j以长度来看的话,代码要简洁些。 初始化dp[0][0:i]=1 表示T中长度为0的串可以和S中任意长度匹配。
int numDistinct(string S, string T)
{
int m = T.length();
int n = S.length();
if(m >= n) return T == S;
vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
for(int i = 0; i <=n; i++)
dp[0][i] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
dp[j][i] = dp[j][i-1] + (S[i-1] == T[j-1] ? dp[j-1][i-1] : 0);
return dp[m][n];
}
节省内存
int numDistinct(string S, string T)
{
int m = T.length();
int n = S.length();
if (m > n) return 0; // impossible for subsequence
vector<int> path(m+1, 0);
path[0] = 1; // initial condition
for (int j = 1; j <= n; j++) {
// traversing backwards so we are using path[i-1] from last time step
for (int i = m; i >= 1; i--) {
path[i] = path[i] + (T[i-1] == S[j-1] ? path[i-1] : 0);
}
}
return path[m];
}
这题参考了REF,其实跟Interleaving String 这道题差不多。
Last updated
Was this helpful?