Scramble String 题解

题目来源:Scramble String

> Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively. Below is one possible representation of s1 = "great": great / gr eat / / g r e at / a t To scramble the string, we may choose any non-leaf node and swap its two children. For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat". rgeat / rg eat / / r g e at / a t We say that "rgeat" is a scrambled string of "great". Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae". rgtae / rg tae / / r g ta e / t a We say that "rgtae" is a scrambled string of "great". Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

解题思路:

用递归即可。 rg|tae gr|eat, rg和gr是scramble, tae和eat递归成 t|ae 和 ea|t, 因此最后满足条件。

    bool isSameChar(string s1, string s2)
    {
        int x[26] = {0};
        for(int i = 0; i < s1.length(); i++)
            ++x[s1[i]-'a'];
        for(int i = 0; i < s2.length(); i++)
            --x[s2[i]-'a'];
        for(int i = 0; i < 26; i++)
        {
            if(x[i] != 0) return false;
        }
        return true;
    }
    bool isScramble(const string &s1, const string &s2)
    {
        if(s1.length() != s2.length()) return false;
        if(s1 == s2) return true;
        if(! isSameChar(s1, s2)) return false;
        int n = s1.length();
        for(int i = 1; i < n; i++)
        {
            if(isScramble(s1.substr(0, i), s2.substr(0, i)) && isScramble(s1.substr(i, n-i), s2.substr(i, n-i)))
                return true;
            if(isScramble(s1.substr(0, i), s2.substr(n-i, i)) && isScramble(s1.substr(i, n-i), s2.substr(0, n-i)))
                return true;
        }
        return false;
    }

虽然能AC,但上面的代码效率确实~ 内存耗费不少吧,每次都去创建string出来。 参考下别人的代码,直接用迭代器来做,省掉了字符串的创建。 以上还可以把一些算过的用map cache起来, 学下 STL的tuple

    bool isSameChar(string::const_iterator first1, string::const_iterator first2, int len)
    {
        int x[26] = {0};
        for(auto i = first1; i != first1+len; i++)
            ++x[*i-'a'];
        for(auto i = first2; i != first2+len; i++)
            --x[*i-'a'];
        for(int i = 0; i < 26; i++)
        {
            if(x[i] != 0) return false;
        }
        return true;
    }
    bool isScramble(string::const_iterator first1, string::const_iterator first2, int len)
    {
        if(len == 1) return *first1 == *first2;
        if(! isSameChar(first1, first2, len)) return false;
        for(int i = 1; i < len; i++)
        {
            if( (isScramble(first1, first2, i) && isScramble(first1+i, first2+i, len-i))
              ||(isScramble(first1, first2+len-i, i) && isScramble(first1+i, first2, len-i)))
              return true;
        }
        return false;
    }
    bool isScramble(const string &s1, const string &s2)
    {
        if(s1.length() != s2.length()) return false;
        if(s1 == s2) return true;
        return isScramble(s1.begin(), s2.begin(), s1.length());
    }

设状态为 f[n][i][j],表示长度为 n,起 点为 s1[i] 和起点为 s2[j] 两个字符串是否互为 scramble,则状态转移方程为

f[n][i][j] = (f[k][i][j] && f[n-k][i+k][j+k])
        || (f[k][i][j+n-k] && f[n-k][i+k][j])

跟上面递归的isScramble(string::const_iterator first1, string::const_iterator first2, int len)一致。

    bool isScramble(const string &s1, const string &s2)
    {
        if(s1.length() != s2.length()) return false;
        if(s1 == s2) return true;
        int n = s1.length();
        //dp[n][i][j], s1[i:i+n), s2[j:j+n) is scramble
        vector<vector<vector<bool> > > dp(n+1, vector<vector<bool>>(n, vector<bool>(n, false)));
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                dp[1][i][j] = s1[i] == s2[j];
        for(int len = 2; len <= n; len++)
            for(int i = 0; i <= n-len; i++)
                for(int j = 0; j <= n-len; j++)
                    for(int k = 1; k < len; k++)
                    {
                        if( (dp[k][i][j] && dp[len-k][i+k][j+k]) ||
                            (dp[k][i][j+len-k] && dp[len-k][i+k][j]))
                            {
                                dp[len][i][j] = true;
                                break;
                            }
                    }
        return dp[n][0][0];
    }

参考 leetcode-cpp

Last updated

Was this helpful?