LeetCode Summary
  • Introduction
  • DP, 动态规划类
    • Best Time to Buy and Sell Stock III 题解
    • Best Time to Buy and Sell Stock 题解
    • Climbing Stairs 题解
    • Decode Ways 题解
    • Distinct Subsequences 题解
    • Edit Distance 题解
    • Interleaving String 题解
    • Longest Palindromic Substring 题解
    • Maximum Product Subarray 题解
    • Maximum Subarray 题解
    • Minimum Path Sum 题解
    • Palindrome Partitioning 题解
    • Palindrome Partitioning II 题解
    • Scramble String 题解
    • Triangle 题解
    • Unique Binary Search Trees 题解
    • Unique Paths II 题解
    • Word Break 题解
    • Word Break II 题解
  • list, 链表相关
    • Add Two Numbers 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Copy List with Random Pointer 题解
    • Insertion Sort List 题解
    • LRU Cache 题解
    • Linked List Cycle 题解
    • Linked List Cycle II 题解
    • Merge Two Sorted Lists 题解
    • Merge k Sorted Lists 题解
    • Partition List 题解
    • Remove Duplicates from Sorted List 题解
    • Remove Duplicates from Sorted List II 题解
    • Remove Nth Node From End of List 题解
    • Reorder List 题解
    • Reverse Linked List II 题解
    • Reverse Nodes in k-Group 题解
    • Rotate List 题解
    • Sort List 题解
    • Swap Nodes in Pairs 题解
  • binary tree, 二叉树相关
    • Balanced Binary Tree 题解
    • Binary Tree Inorder Traversal 题解
    • Binary Tree Level Order Traversal 题解
    • Binary Tree Level Order Traversal II 题解
    • Binary Tree Maximum Path Sum 题解
    • Binary Tree Postorder Traversal 题解
    • Binary Tree Preorder Traversal 题解
    • Binary Tree Zigzag Level Order Traversal 题解
    • Construct Binary Tree from Inorder and Postorder Traversal 题解
    • Construct Binary Tree from Preorder and Inorder Traversal 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Flatten Binary Tree to Linked List 题解
    • Maximum Depth of Binary Tree 题解
    • Minimum Depth of Binary Tree 题解
    • Path Sum 题解
    • Path Sum II 题解
    • Populating Next Right Pointers in Each Node 题解
    • Populating Next Right Pointers in Each Node II 题解
    • Recover Binary Search Tree 题解
    • Same Tree 题解
    • Sum Root to Leaf Numbers 题解
    • Symmetric Tree 题解
    • Unique Binary Search Trees 题解
    • Unique Binary Search Trees II 题解
    • Validate Binary Search Tree 题解
  • sort, 排序相关
    • 3Sum Closest 题解
    • 3Sum 题解
    • 4Sum 题解
    • Insert Interval 题解
    • Longest Consecutive Sequence 题解
    • Merge Intervals 题解
    • Merge Sorted Array 题解
    • Remove Duplicates from Sorted Array 题解
    • Remove Duplicates from Sorted Array II 题解
    • Sort Colors 题解
    • Two Sum 题解
  • search, 搜索相关
    • First Missing Positive 题解
    • Find Minimum in Rotated Sorted Array 题解
    • Find Minimum in Rotated Sorted Array II 题解
    • Median of Two Sorted Arrays 题解
    • Search Insert Position 题解
    • Search a 2D Matrix 题解
    • Search for a Range 题解
    • Search in Rotated Sorted Array 题解
    • Search in Rotated Sorted Array II 题解
    • Single Number 题解
    • Single Number II 题解
  • math, 数学类相关
    • Add Binary 题解
    • Add Two Numbers 题解
    • Divide Two Integers 题解
    • Gray Code 题解
    • Integer to Roman 题解
    • Multiply Strings 题解
    • Palindrome Number 题解
    • Plus One 题解
    • [Pow(x, n) 题解](math/Pow(x,-n).md)
    • Reverse Integer 题解
    • Roman to Integer 题解
    • [Sqrt(x) 题解](math/Sqrt(x).md)
    • [String to Integer (atoi) 题解](math/String-to-Integer-(atoi).md)
    • Valid Number 题解
  • string, 字符串处理相关
    • Anagrams 题解
    • Count and Say 题解
    • Evaluate Reverse Polish Notation 题解
    • [Implement strStr() 题解](string/Implement-strStr().md)
    • Length of Last Word 题解
    • Longest Common Prefix 题解
    • Longest Palindromic Substring 题解
    • Longest Substring Without Repeating Characters 题解
    • Longest Valid Parentheses 题解
    • Minimum Window Substring 题解
    • Regular Expression Matching 题解
    • Reverse Words in a String 题解
    • Simplify Path 题解
    • Text Justification 题解
    • Valid Parentheses 题解
    • Wildcard Matching 题解
    • ZigZag Conversion 题解
  • combination and permutation, 排列组合相关
    • Combinations 题解
    • Combination Sum 题解
    • Combination Sum II 题解
    • Letter Combinations of a Phone Number 题解
    • Next Permutation 题解
    • Palindrome Partitioning 题解
    • Permutation Sequence 题解
    • Permutations 题解
    • Permutations II 题解
    • Subsets 题解
    • Subsets II 题解
    • Unique Paths 题解
  • matrix, 二维数组, 矩阵相关
    • Rotate Image 题解
    • Set Matrix Zeroes 题解
    • Spiral Matrix 题解
    • Spiral Matrix II 题解
    • Maximal Rectangle 题解
  • 回溯, BFS/DFS
    • Clone Graph 题解
    • Generate Parentheses 题解
    • N-Queens 题解
    • N-Queens II 题解
    • Restore IP Addresses 题解
    • Sudoku Solver 题解
    • Surrounded Regions 题解
    • Word Ladder 题解
    • Word Ladder II 题解
    • Word Search 题解
  • greedy, 贪心
    • Best Time to Buy and Sell Stock II 题解
    • Jump Game 题解
    • Jump Game II 题解
  • 其他
    • Candy 题解
    • Container With Most Water 题解
    • Gas Station 题解
    • Gray Code 题解
    • Max Points on a Line 题解
    • [Pascal's Triangle 题解](others/Pascal's-Triangle.md)
    • [Pascal's Triangle II 题解](others/Pascal's-Triangle-II.md)
    • Remove Element 题解
    • Trapping Rain Water 题解
Powered by GitBook
On this page

Was this helpful?

  1. search, 搜索相关

First Missing Positive 题解

Previoussearch, 搜索相关NextFind Minimum in Rotated Sorted Array 题解

Last updated 5 years ago

Was this helpful?

题目来源:

> Given an unsorted integer array, find the first missing positive integer. For example, Given [1,2,0] return 3, and [3,4,-1,1] return 2. Your algorithm should run in O(n) time and uses constant space.

解题思路:

注意有可能含有重复的,若非重复的可以用应该得的正数和和实际正数和之差得到miss的正数,如果为0的话,就是本来就是连续的数,first missing的就是max+1. 含有重复的话可以用

这里用原地改变下数组的位置来算,例如 3 3 1 4 0,将index所在的数([0,n]的数)放到应该放的数里面去(数-1),比如这里应该是放到 3 应该放到index=2,1放到index=0,4放到index=3,所有数的放好后,再从头开始扫描数组,第一个下标所得的数不是index+1,那么差的就是这个数。复杂度不超过O(2*n) A里面的数,若A[i]是正数0-n之间的,则把TA放到位置i-1处。即最后达到的效果是 A[i]=i+1,不然就是负数 或者大于n的数。第一遍遍历把所有的数归位,第二遍找,哪个位置差了,就那个位置对应的数i+1就是差的正数。

第一版本的代码确实很戳啊。

    int firstMissingPositive(int A[], int n)
    {
        if (n == 0) return 1;
        if (n == 1) return A[0] > 0 ? (A[0] == 1 ? 2 : 1) : 1;

        int index = 0;
        while(index < n)
        {
            int tmp = A[index];
            bool goon = true;
            while(goon)
            {
                if(tmp-1 >=0 && tmp-1 < n)
                {
                    if(A[tmp-1] == tmp)
                    {
                        goon = false;
                        index++;
                    }
                    else
                    {
                        int tmpbak = A[tmp-1];
                        A[tmp-1] = tmp;
                        tmp = tmpbak;
                    }
                }else
                {
                    break;
                }
            }
            while(index < n && (A[index] == index+1 ||
                  A[index] <= 0 || A[index] >= n))
                index++;
        }

        index = 0;
        while(index < n)
        {
            if(A[index] != index+1)
                return index+1;
            index++;
        }
        return n+1;
    }

其实跟下面的代码一个意思。

    int firstMissingPositive(int A[], int n) 
    {
        if(n == 0) return 1;
        int i = 0;
        while(i < n)
        {
            while(i < n && A[i] != i+1)
            {
                if(A[i] <= 0 || A[i] > n || A[i] == A[A[i]-1])
                    i++;
                else
                    std::swap(A[i], A[A[i]-1]);
            }
            i++;
        }
        for(int i = 0; i < n; i++)
            if(A[i] != (i+1)) return i+1;
        return n+1;
    }
First Missing Positive