LeetCode Summary
  • Introduction
  • DP, 动态规划类
    • Best Time to Buy and Sell Stock III 题解
    • Best Time to Buy and Sell Stock 题解
    • Climbing Stairs 题解
    • Decode Ways 题解
    • Distinct Subsequences 题解
    • Edit Distance 题解
    • Interleaving String 题解
    • Longest Palindromic Substring 题解
    • Maximum Product Subarray 题解
    • Maximum Subarray 题解
    • Minimum Path Sum 题解
    • Palindrome Partitioning 题解
    • Palindrome Partitioning II 题解
    • Scramble String 题解
    • Triangle 题解
    • Unique Binary Search Trees 题解
    • Unique Paths II 题解
    • Word Break 题解
    • Word Break II 题解
  • list, 链表相关
    • Add Two Numbers 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Copy List with Random Pointer 题解
    • Insertion Sort List 题解
    • LRU Cache 题解
    • Linked List Cycle 题解
    • Linked List Cycle II 题解
    • Merge Two Sorted Lists 题解
    • Merge k Sorted Lists 题解
    • Partition List 题解
    • Remove Duplicates from Sorted List 题解
    • Remove Duplicates from Sorted List II 题解
    • Remove Nth Node From End of List 题解
    • Reorder List 题解
    • Reverse Linked List II 题解
    • Reverse Nodes in k-Group 题解
    • Rotate List 题解
    • Sort List 题解
    • Swap Nodes in Pairs 题解
  • binary tree, 二叉树相关
    • Balanced Binary Tree 题解
    • Binary Tree Inorder Traversal 题解
    • Binary Tree Level Order Traversal 题解
    • Binary Tree Level Order Traversal II 题解
    • Binary Tree Maximum Path Sum 题解
    • Binary Tree Postorder Traversal 题解
    • Binary Tree Preorder Traversal 题解
    • Binary Tree Zigzag Level Order Traversal 题解
    • Construct Binary Tree from Inorder and Postorder Traversal 题解
    • Construct Binary Tree from Preorder and Inorder Traversal 题解
    • Convert Sorted List to Binary Search Tree 题解
    • Flatten Binary Tree to Linked List 题解
    • Maximum Depth of Binary Tree 题解
    • Minimum Depth of Binary Tree 题解
    • Path Sum 题解
    • Path Sum II 题解
    • Populating Next Right Pointers in Each Node 题解
    • Populating Next Right Pointers in Each Node II 题解
    • Recover Binary Search Tree 题解
    • Same Tree 题解
    • Sum Root to Leaf Numbers 题解
    • Symmetric Tree 题解
    • Unique Binary Search Trees 题解
    • Unique Binary Search Trees II 题解
    • Validate Binary Search Tree 题解
  • sort, 排序相关
    • 3Sum Closest 题解
    • 3Sum 题解
    • 4Sum 题解
    • Insert Interval 题解
    • Longest Consecutive Sequence 题解
    • Merge Intervals 题解
    • Merge Sorted Array 题解
    • Remove Duplicates from Sorted Array 题解
    • Remove Duplicates from Sorted Array II 题解
    • Sort Colors 题解
    • Two Sum 题解
  • search, 搜索相关
    • First Missing Positive 题解
    • Find Minimum in Rotated Sorted Array 题解
    • Find Minimum in Rotated Sorted Array II 题解
    • Median of Two Sorted Arrays 题解
    • Search Insert Position 题解
    • Search a 2D Matrix 题解
    • Search for a Range 题解
    • Search in Rotated Sorted Array 题解
    • Search in Rotated Sorted Array II 题解
    • Single Number 题解
    • Single Number II 题解
  • math, 数学类相关
    • Add Binary 题解
    • Add Two Numbers 题解
    • Divide Two Integers 题解
    • Gray Code 题解
    • Integer to Roman 题解
    • Multiply Strings 题解
    • Palindrome Number 题解
    • Plus One 题解
    • [Pow(x, n) 题解](math/Pow(x,-n).md)
    • Reverse Integer 题解
    • Roman to Integer 题解
    • [Sqrt(x) 题解](math/Sqrt(x).md)
    • [String to Integer (atoi) 题解](math/String-to-Integer-(atoi).md)
    • Valid Number 题解
  • string, 字符串处理相关
    • Anagrams 题解
    • Count and Say 题解
    • Evaluate Reverse Polish Notation 题解
    • [Implement strStr() 题解](string/Implement-strStr().md)
    • Length of Last Word 题解
    • Longest Common Prefix 题解
    • Longest Palindromic Substring 题解
    • Longest Substring Without Repeating Characters 题解
    • Longest Valid Parentheses 题解
    • Minimum Window Substring 题解
    • Regular Expression Matching 题解
    • Reverse Words in a String 题解
    • Simplify Path 题解
    • Text Justification 题解
    • Valid Parentheses 题解
    • Wildcard Matching 题解
    • ZigZag Conversion 题解
  • combination and permutation, 排列组合相关
    • Combinations 题解
    • Combination Sum 题解
    • Combination Sum II 题解
    • Letter Combinations of a Phone Number 题解
    • Next Permutation 题解
    • Palindrome Partitioning 题解
    • Permutation Sequence 题解
    • Permutations 题解
    • Permutations II 题解
    • Subsets 题解
    • Subsets II 题解
    • Unique Paths 题解
  • matrix, 二维数组, 矩阵相关
    • Rotate Image 题解
    • Set Matrix Zeroes 题解
    • Spiral Matrix 题解
    • Spiral Matrix II 题解
    • Maximal Rectangle 题解
  • 回溯, BFS/DFS
    • Clone Graph 题解
    • Generate Parentheses 题解
    • N-Queens 题解
    • N-Queens II 题解
    • Restore IP Addresses 题解
    • Sudoku Solver 题解
    • Surrounded Regions 题解
    • Word Ladder 题解
    • Word Ladder II 题解
    • Word Search 题解
  • greedy, 贪心
    • Best Time to Buy and Sell Stock II 题解
    • Jump Game 题解
    • Jump Game II 题解
  • 其他
    • Candy 题解
    • Container With Most Water 题解
    • Gas Station 题解
    • Gray Code 题解
    • Max Points on a Line 题解
    • [Pascal's Triangle 题解](others/Pascal's-Triangle.md)
    • [Pascal's Triangle II 题解](others/Pascal's-Triangle-II.md)
    • Remove Element 题解
    • Trapping Rain Water 题解
Powered by GitBook
On this page
  • 暴力搜索, \(O(N^2) \)
  • DP, \(O(N^2) \)
  • \( O(n) \) 算法, Manacher 算法

Was this helpful?

  1. string, 字符串处理相关

Longest Palindromic Substring 题解

PreviousLongest Common Prefix 题解NextLongest Substring Without Repeating Characters 题解

Last updated 5 years ago

Was this helpful?

题目来源:

> Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

解题思路:

暴力搜索, \(O(N^2) \)

最简单的方法就是选中i(0~n-1),然后向两边扩展,复杂度为\(O(N^2) \) . 注意回文长度可能是奇数或者偶数, 即 aba or abba

string longestPalindrome(string s) 
{
  int n = s.length();
  if (n <= 1) return s;
  int start = 0; int maxLen = 1;
  for(int i = 0; i < n; i++)
  {
      //center: i
      int left = i - 1;
      int right = i + 1;
      while(left >= 0 && right < n
          && s[left] == s[right])
          --left, ++right;
      //s[left] != s[right] , s[left+1 : right-1] is palindrome
      int len = (right-1) - (left+1) + 1;
      if(len > maxLen)
          start = left+1, maxLen = len;
      //center: between s[i] and s[i+1]
      if(i+1 < n && s[i] == s[i+1])
      {
          left = i;
          right = i+1;
          while(left >= 0 && right < n
              && s[left] == s[right])
              --left, ++right;
          len = (right-1) - (left+1) + 1;
          if(len > maxLen)
              start = left+1, maxLen = len;
      }
  }
  return s.substr(start, maxLen);
}

或者可以这样,将中间相同的字符跳过,不考虑奇数还是偶数的串(其实还是考虑了,也包括在内了)。

abbbbbbbbba, left=1时,right一直走到最后一个b, 然后往两边判断是否相等.
string longestPalindrome(string s) 
{
   int n = s.length();
   if (n <= 1) return s;
   int start = 0; int maxLen = 1;
   for(int i = 0; i < n; i++)
   {
       int left = i;
       int right = i;
       while(right+1 < n && s[right+1] == s[left])
           ++right;
       //s[right+1] != s[left], s[right]=s[left]
       i = right; //skip the same char
       //a[bbbbbbbb]a
       while(left-1 >= 0 && right+1 < n
           && s[left-1] == s[right+1])
           --left, ++right;
       //s[left : right] is palindrome
       int len = right - left + 1;
       if(len > maxLen)
           start = left, maxLen = len;
   }
   return s.substr(start, maxLen);
}

DP, \(O(N^2) \)

dp[i][j] 表示 s[i:j] 是回文, 当且尽当s[i] == [j] && dp[i+1][j-1], 即计算dp[i][j]时, dp[i+1][j-1]得先计算出来,算dp[x][i],必须先把dp[x][i-1]先计算出来了来。

string longestPalindrome(string s) 
{
   int n = s.length();
   if (n <= 1) return s;
   int start = 0; int maxLen = 1;
   //vector<vector<bool> > dp(n, vector<bool>(n, false));
   bool dp[1000][1000] = {false};
   for(int i = 0; i < n; i++)
       dp[i][i] = true;
   //dp[j][i]: s[j:i] is palindrome, dp[j+1][i-1] true + s[j]==s[i]
   for(int i = 1; i < n; i++)
       for(int j = 0; j < i; j++)
       {
           if(s[i] == s[j] && (j+1 > i-1 || dp[j+1][i-1]))
           {
               dp[j][i] = true;
               int len = i - j + 1;
               if(len > maxLen)
                   maxLen = len, start = j;
           }
       }
   return s.substr(start, maxLen);
}

计算s[:5]的结果,先得把所有s[:4]结尾的回文算出来了来。 上面比如在算dp[i][5]时,用到了dp[x][4],在上面的循环中,dp[x][4]已经算出来了的。 另外,虽然都是平方的算法,上面用vector还过不了,用数组才能过。

\( O(n) \) 算法, Manacher 算法

>

首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#(注意,下面的代码是用C语言写就,由于C语言规范还要求字符串末尾有一个'\0'所以正好OK,但其他语言可能会导致越界)。

下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i],也就是把该回文串“对折”以后的长度),比如S和P的对应关系:
S  #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P  1  2  1  2  5  2  1  4  1  2  1  6  1  2  1  2  1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)
那么怎么计算P[i]呢?该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:
//记j = 2 * id - i,也就是说 j 是 i 关于 id 的对称点。
if (mx - i > P[j]) 
    P[i] = P[j];
else /* P[j] >= mx - i */
    P[i] = mx - i; // P[i] >= mx - i,取最小值,之后再匹配更新。
当然光看代码还是不够清晰,还是借助图来理解比较容易。
当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
当 P[j] >= mx - i 的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。
对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

代码如下:

//Manacher O(n)
//ref1: http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
//ref2: http://blog.csdn.net/pickless/article/details/9040293
//ref3: http://www.felix021.com/blog/read.php?2040
string longestPalindrome(string s) 
{
   int len = (int)s.length() * 2 + 2;
   string news(len+1, ' ');
   news[0]='$';
   for(int i = 0; i < s.length(); i++)
   {
       news[2 * i + 1] = '#';
       news[2 * i + 2] = s[i];
   }
   news[len-1] = '#';
   news[len] = '\0';
   vector<int> p(len, 0);
   int mx = 0, id = 0;
   for(int i = 1; i < len; i++)
   {
       p[i] = mx > i ? min(p[2*id-i], mx-i) : 1;
       while(news[i + p[i]] == news[i - p[i]]) ++p[i];
       if(i + p[i] > mx)
       {
           mx = i + p[i];
           id = i;
       }
   }
   int maxLen = 0;
   int center = 0;
   for(int i = 0; i < len; i++)
   {
       if(p[i] > maxLen)
       {
           maxLen = p[i];
           center = i;
       }
   }
   return s.substr((center)/2 - maxLen/2, maxLen-1);
}

,这里“偷”过来。

Longest Palindromic Substring
felix021的文章讲得很清楚